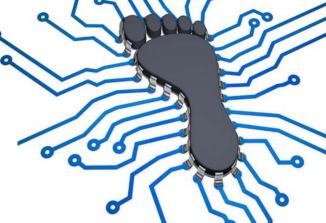
EasyGoing

AN APPROACH TO IMPLEMENT COST-EFFECTIVE AREA WIDE DATA SOURCES FOR THE PEDESTRIAN NAVIGATION IN GERMANY –

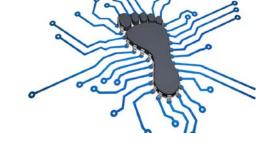
A FEASIBILITY STUDY

PROF. DR. DANIEL BIEBER, KATHLEEN SCHWARZ, ISO-INSTITUT, SAARBRÜCKEN ?

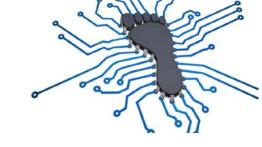
PROF. DR. HARTMUT ASCHE, UNIVERSITÄT POTSDAM


Institut für Sozialforschung

Saarbrücken



GEFÖRDERT VOM



Content

- Problem description and motivation
- Who is "the" pedestrian?
- Evaluation of results
- Which information is needed for the pedestrian navigation?
- How do I get to this information?
- Conclusion

Initial Situation

- The impacts of demografic change
- Promotion of the UN Convention on the Rights of Persons with Disabilities by 2022: Accessibilty is a fundamental right to ensure an independent lifestyle and social participation in all aspects of life for persons with disabilities through a barrierfree environment (Art. 4, 9, 21).
- Smooth mobility chain
 - Indoor-Outdoor Navigation
 - Last mile
- There are currently a large number of isolated applications

Pedestrian Navigation - What is so special about it?

out it?

- Mobility at low speed
- Main focus on the orientation
- Orientation by the use of landmarks
- It ensures a great freedom of movement

Who is "the" Pedestrian?

Characteristics

- Without disabilities
- Reduced mobility
- Motor impairment
- Visual impairment
- Hearing impairment
- Mental disabilities
- Analphabets

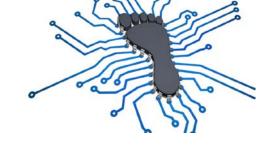
Devices

- (Power) wheelchair
- Walker-rollator
- Other devices

Pedestrians

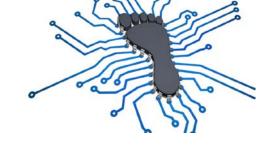
Requirements

- Security
- Accessibilty (incl. buildings)
- Social participation
- Temporary hindrances
- Time-disctance-economy


Motivation

Leisure

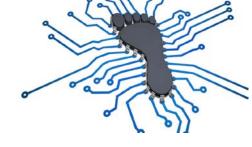
- Culturel activities
- Sightseeing
- Shopping


Business trip

Qualitative Survey of potential users

- Qualitative interviews (n=11)
- Guideline with items to determine...
 - which geographical data are relevant for pedestrians,
 - the reasons for the use of technology,
 - description of experiences made with systems currently available on the market,
 - personal details.
- Evaluation through content analysis

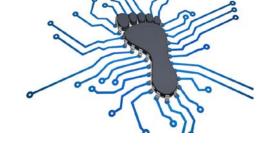
- Results I -



Typical characteristics?

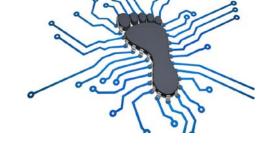
- Programme: Google Maps
- Typical: the route planning is first made on the PC,

if one wants to be on the safe side, a smartphone is taken along the way


- Results II -

Technical Solutions for the use of pedestrian navigation (away from an entire smartphone solution)

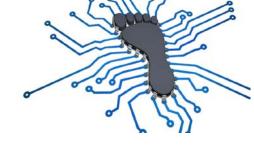
- specific user requirements (visual impairment/reduced mobility/motor impairment)
 - voice guidance
 - vibration
 - smartWatch
 - intelligente clothes
 - augmented Reality (additional information/gamification)
 - man-implants interface
 - intelligent white stick


- Solutions III -

Technical problems that have to be solved!

- the battery power dwindles too fast due to GPS-tracking and mobile data use
- how should we deal with the large amount of data resulting from the complexity of maps in future?
- how should the user requirements friendly data filtering look like?
- smooth transition from outdoor to indoor-navigation (administrative bodies, rail stations, airports, etc.)

- Solutions IV -

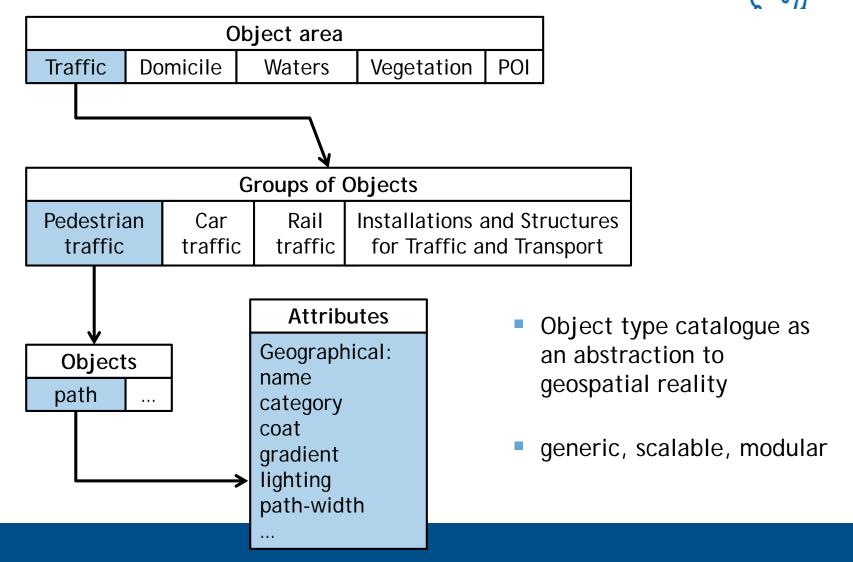

Social participation/independency

- navigation system as a mean for persons with disabilities
- increasing of independency and the feeling of autonomy
- not to be dependent on others

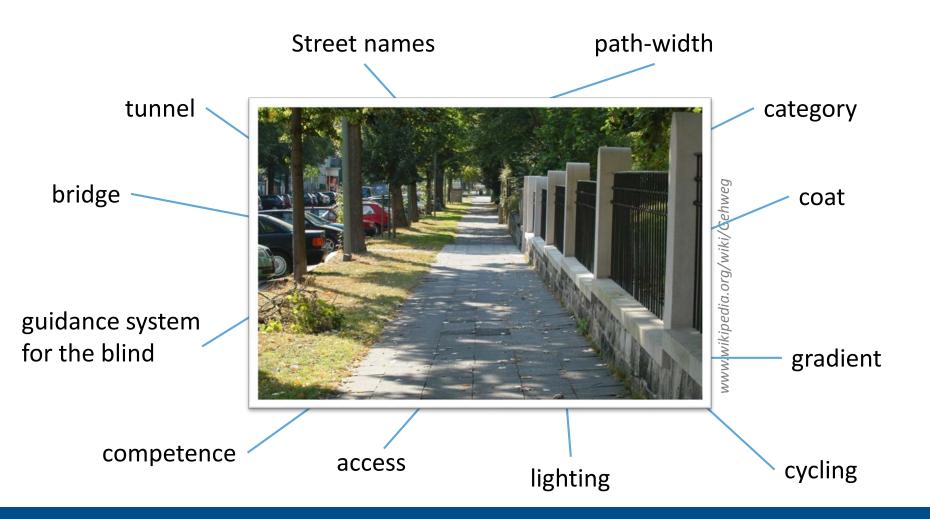
Multimodale journey (beyond national borders)

- Different transportation option can be offered in one single route (board walk, public tranjsport, taxi, car, plane)
- several action alternatives during navigation(restaurant, shopping, meeting friends)

- Solutions V -



Protection of personal data and transparency

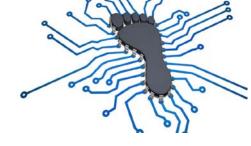

- inadequate knowledge of the saving of appropriate data, the duration and what provider should do with the data
- parties: can not be changed/ can not be accepted

Willingness to pay for pedestrian navigation

 The willingness to pay can only be increased through attractive additional functions / new technical solutions / accurate positioning Object type catalogue for the pedestrian navigation

Analysis of broadways | Main characteristics

Object type catalogue for the pedestrian navigation


Analysis of the paths | *Main characteristics*

Category	Coat	Lighting	Competence	Cycling	Guidiance system for the blind
 pavement footpath trail passage pedestrian zone garden paths 	 Asphalt cobblstone beton metal wood dense surface gravel pebble sand open soil gras 	 lighted 24/7 Partially lighted no lighting 	• public • private	• allowed • not allowed	availablenot available

Conclusion

- Results
 - Only isolated solutions are available
 - Heterogeneous data collection
 - Non-existing guidelines and solutions to create data
 - Non-appropiate data set for pedestrian navigation
- Standards for object types and methods for recording are to be developed
- For optimal routing, a high degree of individualisation in filtering data is crucial
- Automation of processes and methods to gather data, to processing data and to updating data for a cost-effective data set

Contact

Institut für Sozialforschung und Sozialwirtschaft, Saarbrücken

Prof. Dr. Daniel Bieber (bieber@iso-institut.de)

Kathleen Schwarz (schwarz@iso-institut.de)

Institut für Geographie | Universität Potsdam

Prof. Dr. Hartmut Asche (gislab@uni-potsdam.de)