SOUND ENVIRONMENT ANALYSIS IN MEDICAL NURSING HOMES

Dan-Ovidiu ANDREI^{1,2,3}, Dan ISTRATE^{1,3}, Jérôme BOUDY², Said MAMMAR³

¹ ESME SUDRIA, 38 Rue Molière, 94200 Ivry sur Seine, France; e-mail: ovidiu@esme.fr, istrate@esme.fr
 ² TSP/IMT, 9 Rue Charles Fourier, 91000 Evry, France; e-mail: jerome.boudy@telecom-sudparis.eu
 ³ IBISC, 40 Rue de Pelvoux, 91000 Evry, France; e-mail: said.mammar@ibisc.univ-evry.fr

Quick Overview

- > The E-monitor'âge project
- Sound environment analysis procedure
- Sound database sources / composition
- Data evaluation:
 - Laboratory data evaluation
 - Living Lab data evaluation
 - Real data evaluation
- Conclusions

The E-monitor'âge project

Goal

- providing a monitoring system based on different types of sensors and a self-learning decision process for inhabitants of medicalized retirement homes.
- improving comfort and safety while increasing the availability of nursing staff.

Framework

- The concept of E-monitor'âge project is based on the fact that wearable devices or wearable sensors are an issue when used for monitoring of elderly and dependent people.
- is meant for Smart Homes already equipped with a Building Management System (BMS)

The E-monitor'âge project

E-monitor'âge project concept

Sound environment analysis

Difficulties encountered:

- a very large number of sound classes
- distant analysis using omnidirectional microphones
- noise presence
- large variability of the same sound

Sound environment analysis

Sound environment analysis architecture

Sound database Step one:

- Source: sound effects CDs, Internet, Lab recordings
 1049 files / one hour / 18 sound classes
 - **Step two:**
- Source: Living Lab in Grenoble
- 21 persons, each scenario contains 2 hours of recordings using 7 microphones

Step three:

 Real recordings in a nursing home, three consecutive days – in the framework of E-monitor'âge project

Sound database

Coughing	Water	Object_Drop		
Snoring	Ring	Radio_TV		
Yawning	Paper	Vacuum_Cleaner		
Hands_Clapping	Keys	Kitchenware		
Door_Clapping	Person_Fall	Window_Shutters		
Door_Opening	Brushing Teeth	Speech		
List of sound classes used for laboratory and living lab recordings				

Class no.	Sount class	Occurences	Class no.	Sount class	Occurences		
1	Cough	22	8	Water flow	36		
2	Snoring	4065	9	Object hit	376		
3	Yawn	24	w mapshot 10	Kitchenware	171		
4	Door clapping	92	R ctangular 11 on	Electric Razor	66		
5	Door opening	50	^{IN} delay 12	Speech	709		
6	Door knock	3	13	Sigh	52		
7	Steps	16 000 16 000 000	1 10 Copy 14 1 Save &	Unknown	328		
List of detected sound classes							

Data evaluation

Laboratory evaluation

average sound recognition rate using GMM: about 71%
average sound recognition rate using SVM/GSL: about 75%

Living Lab evaluation

 average sound recognition rate, using SVM/GSL method: about 70%

Real Data evaluation

Leave-one-out method, GMM, MFCC, E-monitor'âge only sounds	56.147%
Leave-one-out method, GMM, LFCC, E-monitor'âge only sounds	73.042%
TrainWorld on living lab sounds, TrainTarget on 80% Emonitor'age sounds, Tests on 20% E-monitor'âge sounds, GMM, MFCC	68.596%
TrainWorld on living lab sounds, TrainTarget on 80% Emonitor'age sounds, Tests on 20% E-monitor'âge sounds, GMM, LFCC	74.128%
Cool Deservition notes for different tests	

Good Recognition rates for different tests

Real Data evaluation

Rec. class Class	01	03	04	05	08	10	11	12
01	36.36	9.09	0	4.55	27.27	0	9.09	13.64
03	0	17.39	0	8.7	47.83	0	21.74	4.35
04	2.17	4.35	47.83	11.96	18.48	2.17	10.87	2.17
05	2	4	26	38	20	6	2	2
08	0	0	0	8.33	50	0	38.89	2.78
10	0	0	5.85	14.62	1.17	78.36	0	0
11	1.52	0	0	0	22.73	0	72.73	3.03
12	1.68	4.9	2.52	2.24	8.81	0.98	4.62	74.27
Overall Good Recognition Percentage: 68 596%								

Confusion matrix for TrainWorld on living lab sounds, TrainTarget on 80% Emonitor'age sounds, Tests on 20% EMonitor'age sounds, GMM, MFCC

Conclusions

- The sound environment is very rich in information, but the noise presence and the distant recording create difficulties for the analysis.
- The best results so far have been obtained by creating the models from laboratory sound data base, by adapting all models using 80% of the sounds recorded in the nursing home (E-monitor'âge project), all with LFCC coefficients.
- The recognition rate is comparable with the one obtained using only sounds recorded in controlled conditions.
- The work is in progress in order to obtain a more reliable system.

Thanks

The authors wish to thank:

BPI France which has funded the E-monitor'âge project
all E-monitor'âge consortium members

